$t t^{*}$-geometry on the tangent bundle of an almost complex manifold

Lars Schäfer*
Mathematisches Institut der Universität Bonn, Beringstraße 1, D-53115 Bonn, Germany
Institut Élie Cartan de Mathématiques, Université Henri Poincaré - Nancy 1, B.P. 239, F-54506 Vandouvre-lès-Nancy Cedex, France

Received 16 December 2005; accepted 20 August 2006
Available online 5 October 2006

Abstract

The subject of this paper is $t t^{*}$-bundles ($T M, D, S$) over an almost complex manifold (M, J). Let ∇ be a flat connection on M. We characterize those $t t^{*}$-bundles with $\nabla=D+S$ which are induced by the one parameter family of connections $\nabla^{\theta}=\exp (\theta J) \circ \nabla \circ \exp (-\theta J)$ and obtain a uniqueness result for solutions where D is complex. A subclass of such solutions is flat nearly Kähler manifolds and special Kähler manifolds. Moreover, we study the case where these $t t^{*}$-bundles admit the structure of symplectic or metric $t t^{*}$-bundles. Finally, we generalize the notion of pluriharmonic maps to maps from almost complex manifolds (M, J) into pseudo-Riemannian manifolds and relate the above symplectic and metric $t t^{*}$-bundles to pluriharmonic maps from (M, J) into the pseudo-Riemannian symmetric spaces $S O_{0}(p, q) / U(p, q)$ and $\operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$, respectively.

(C) 2006 Elsevier B.V. All rights reserved.

Keywords: $t t^{*}$-geometry and $t t^{*}$-bundles; Special complex and special Kähler manifolds; Nearly Kähler manifolds; Pluriharmonic maps; PseudoRiemannian symmetric spaces

1. Introduction

In this work we study $t t^{*}$-bundles on the tangent bundle of an almost complex manifold (M, J) as base. In previous work about $t t^{*}$-bundles we only considered the case where (M, J) is a complex manifold $[4,17]$. However, in the study of $t t^{*}$-bundles on the tangent bundle it is reasonable to consider almost complex manifolds, since in this way nearly Kähler manifolds with flat Levi-Civita connection arise as solutions of $t t^{*}$-geometry. We give a constructive classification of Levi-Civita flat nearly Kähler manifolds in a common work with Cortés [5]. Another class of interesting solutions is special Kähler manifolds which we studied in [4]. In other words, $t t^{*}$-bundles on the tangent bundle of an almost complex manifold (M, J) are a common generalization of these two important geometries. Nearly Kähler manifolds are of interest in the physics of string theory and supersymmetry (compare Friedrich and Ivanov [10] and references within) and in mathematics of weak holonomy (compare the works of A. Gray). The notion of special Kähler manifolds was introduced by de Wit and van Proeyen [7] and has its origin in certain supersymmetric field theories. For a survey on this subject we refer to Cortés [3].

[^0]Let us explain the structure of this paper. First we introduce the notion of (metric, symplectic) $t t^{*}$-bundles and give explicit equations for this geometric structure, the so-called $t t^{*}$-equations. Part of the $t t^{*}$-data is a one-parameter family of flat connections D^{θ} with $\theta \in \mathbb{R}$. Every almost complex manifold (M, J) endowed with a flat connection ∇ carries a natural family of flat connections given by

$$
\nabla^{\theta}=\exp (\theta J) \circ \nabla \circ \exp (-\theta J), \quad \text { with } \theta \in \mathbb{R} .
$$

We study $t t^{*}$-bundles for which the families D^{θ} and ∇^{θ} are equivalent in the sense of the following:
Definition 1. Two one-parameter families of connections $\nabla^{\theta}, D^{\theta}$ on some vector bundle E with $\theta \in \mathbb{R}$ are called (linear) equivalent with factor $\alpha \in \mathbb{R}$ if they satisfy the equation $\nabla^{\theta}=D^{\alpha \theta}$.

Afterwards we restrict to $t t^{*}$-bundles as above such that the connection $D:=\frac{1}{2}\left(D^{0}+D^{\pi}\right)$ is complex, i.e. satisfies $D J=0$. These are recovered uniquely from the connection ∇ and the complex structure J. In addition compatibility conditions on the pair (∇, J) are given and it is shown that for special complex and nearly Kähler manifolds these compatibility conditions on (∇, J) hold. More precisely, we give a class of solutions which corresponds to special complex manifolds with torsion and a class of solutions which corresponds to flat almost complex manifolds satisfying the nearly Kähler condition (with torsion). In the following we study whether these $t t^{*}$-bundles provide metric and symplectic $t t^{*}$-bundles. Solutions of the first type are, for example, given by special Kähler manifolds and the second arise on Levi-Civita flat nearly Kähler manifolds, while neither special Kähler manifolds admit symplectic $t t^{*}$-bundles nor Levi-Civita flat nearly Kähler manifolds admit metric $t t^{*}$-bundles.

Finally, there is a relation between pluriharmonic maps and $t t^{*}$-geometry, which was studied in $[6,17,18,4]$. In this work we generalize the notion of a pluriharmonic map to maps from almost complex manifolds into pseudoRiemannian manifolds. We introduce \mathbb{S}^{1}-pluriharmonic maps which generalize the notion of associated families of pluriharmonic maps (see for example [8]) to maps from almost complex manifolds into pseudo-Riemannian manifolds. We give conditions for an \mathbb{S}^{1}-pluriharmonic map to be pluriharmonic and a result, which relates generalized pluriharmonic to harmonic maps. With these notions we associate pluriharmonic maps into $\operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$, respectively $S O_{0}(p, q) / U(p, q)$, to the above metric and symplectic $t t^{*}$-bundles.

2. $t t^{*}$-bundles

We extend the real differential-geometric notion of a $t t^{*}$-bundle of $[4,17]$ by admitting the complex structure of the base manifold to be non-integrable. Further we introduce the notion of symplectic $t t^{*}$-bundles.

Definition 2. A tt^{\star}-bundle (E, D, S) over an almost complex manifold (M, J) is a real vector bundle $E \rightarrow M$ endowed with a connection D and a section $S \in \Gamma\left(T^{*} M \otimes \operatorname{End} E\right)$ which satisfy the tt^{*}-equation

$$
\begin{equation*}
R^{\theta}=0 \quad \text { for all } \theta \in \mathbb{R}, \tag{2.1}
\end{equation*}
$$

where R^{θ} is the curvature tensor of the connection D^{θ} defined by

$$
\begin{equation*}
D_{X}^{\theta}:=D_{X}+\cos (\theta) S_{X}+\sin (\theta) S_{J X} \quad \text { for all } X \in T M \tag{2.2}
\end{equation*}
$$

A metric tt^{*}-bundle (E, D, S, g) is a tt^{*}-bundle (E, D, S) endowed with a possibly indefinite D-parallel fiber metric g such that for all $p \in M$

$$
\begin{equation*}
g\left(S_{X} Y, Z\right)=g\left(Y, S_{X} Z\right) \quad \text { for all } X, Y, Z \in T_{p} M \tag{2.3}
\end{equation*}
$$

A symplectic tt^{*}-bundle (E, D, S, ω) is a tt^{*}-bundle (E, D, S) endowed with the structure of a symplectic vector bundle ${ }^{1}(E, \omega)$, such that ω is D-parallel and S is ω-symmetric, i.e. for all $p \in M$

$$
\begin{equation*}
\omega\left(S_{X} Y, Z\right)=\omega\left(Y, S_{X} Z\right) \quad \text { for all } X, Y, Z \in T_{p} M \tag{2.4}
\end{equation*}
$$

[^1]Remark 1. If (E, D, S) is a tt^{*}-bundle then $\left(E, D, S^{\theta}\right)$ is a tt^{*}-bundle for all $\theta \in \mathbb{R}$, where

$$
\begin{equation*}
S^{\theta}:=D^{\theta}-D=\cos (\theta) S+\sin (\theta) S_{J} . \tag{2.5}
\end{equation*}
$$

The same remark applies to metric tt *-bundles and symplectic $t t^{*}$-bundles. In particular, setting $\theta=\pi$ we find, that $(E, D,-S)$ is a tt*-bundle.

As for $t t^{*}$-bundles (E, D, S) over a complex manifold (M, J) we find explicit equations for D and S.
Proposition 1. Let E be a real vector bundle over an almost complex manifold (M, J) endowed with a connection D and a section $S \in \Gamma\left(T^{*} M \otimes \operatorname{End} E\right)$.
Then (E, D, S) is a $t t^{*}$-bundle if and only if D and S satisfy the following equations:

$$
\begin{align*}
& R^{D}+S \wedge S=0, \tag{2.6}\\
& S \wedge S \text { is of type }(1,1), \tag{2.7}\\
& {\left[D_{X}, S_{Y}\right]-\left[D_{Y}, S_{X}\right]-S_{[X, Y]}=0, \quad \forall X, Y \in \Gamma(T M),} \tag{2.8}\\
& {\left[D_{X}, S_{J Y}\right]-\left[D_{Y}, S_{J X}\right]-S_{J[X, Y]}=0, \quad \forall X, Y \in \Gamma(T M) .} \tag{2.9}
\end{align*}
$$

Fixing a torsion-free connection on (M, J) the last two equations are equivalent to

$$
\begin{equation*}
d^{D} S=0 \quad \text { and } \quad d^{D} S_{J}=0 \tag{2.10}
\end{equation*}
$$

Proof (Compare [4] and [17]). As for $t t^{*}$-bundles over complex manifolds (M, J) one calculates using the theorems of addition $2 \cos \theta \sin \theta=\sin 2 \theta, 2 \cos ^{2} \theta=1+\cos 2 \theta$ and $2 \sin ^{2} \theta=1-\cos 2 \theta$, the (finite) Fourier decomposition of R^{θ} in the variable θ. The tt^{*}-equation $R^{\theta}=0$ means the vanishing of all Fourier-components. This yields the claimed equations.

3. Solutions on the tangent bundle of an almost complex manifold

Given an almost complex manifold (M, J) with a flat connection ∇ it is natural to consider the one-parameter family ∇^{θ} of connections, which is defined by

$$
\begin{equation*}
\nabla_{X}^{\theta} Y=\exp (\theta J) \nabla_{X}(\exp (-\theta J) Y) \quad \text { for } X, Y \in \Gamma(T M) \tag{3.1}
\end{equation*}
$$

where $\exp (\theta J)=\cos (\theta) I d+\sin (\theta) J$.
Since ∇ is flat, ∇^{θ} is flat, too.
We are now going to analyze the form of $t t^{*}$-bundles ($T M, D, S$) for which the connection D^{θ} defined in Eq. (2.2) is linear equivalent (compare Definition 1) to the connection ∇^{θ} defined in Eq. (3.1).

Proposition 2. Given an almost complex manifold (M, J) with a flat connection ∇ and a decomposition of $\nabla=D+S$ into a connection D and a section S in $T^{*} M \otimes \operatorname{End}(T M)$. Then $(T M, D, S)$ defines a $t t^{*}$-bundle, such that D^{θ} is linear equivalent to ∇^{θ} with factor $\alpha= \pm 2$ if and only if S and D satisfy

$$
S_{J X}= \pm J S_{X} Y
$$

and

$$
-\left(D_{X} J\right) Y=J S_{X} Y+S_{X} J Y=:\left\{S_{X}, J\right\} Y
$$

for all $X, Y \in \Gamma(T M)$.
Proof. First one has to calculate ∇^{θ} for $X, Y \in \Gamma(T M)$

$$
\begin{aligned}
\nabla_{X}^{\theta} Y & =\exp (\theta J)\left(D_{X}+S_{X}\right)(\cos (\theta) I d-\sin (\theta) J) Y \\
& =D_{X} Y-\exp (\theta J) \sin (\theta)\left(D_{X} J\right) Y+(\cos (\theta) I d+\sin (\theta) J) S_{X}(\cos (\theta) I d-\sin (\theta) J) Y \\
& =D_{X} Y-\left(\cos (\theta) \sin (\theta)+\sin ^{2}(\theta) J\right)\left(D_{X} J\right) Y+\cos ^{2}(\theta) S_{X} Y-\sin ^{2}(\theta) J S_{X} J Y-\cos (\theta) \sin (\theta)\left[S_{X}, J\right] Y,
\end{aligned}
$$

which yields with the theorems of addition, i.e.

$$
2 \sin (\theta) \cos (\theta)=\sin (2 \theta), \quad 2 \cos ^{2}(\theta)=1+\cos (2 \theta) \quad \text { and } \quad 2 \sin ^{2}(\theta)=1-\cos (2 \theta)
$$

the identity

$$
\begin{aligned}
\nabla_{X}^{\theta} Y= & D_{X} Y-\frac{1}{2} \sin (2 \theta)\left(D_{X} J\right) Y-\frac{1}{2}(1-\cos (2 \theta)) J\left(D_{X} J\right) Y \\
& +\frac{1}{2}(1+\cos (2 \theta)) S_{X} Y-\frac{1}{2}(1-\cos (2 \theta)) J S_{X} J Y-\frac{1}{2} \sin (2 \theta)\left[S_{X}, J\right] Y \\
= & D_{X} Y+\frac{1}{2}\left[S_{X}-J S_{X} J-J D_{X} J\right] Y \\
& +\frac{1}{2} \sin (2 \theta)\left[\left[J, S_{X}\right]-D_{X} J\right] Y+\frac{1}{2} \cos (2 \theta)\left[S_{X}+J S_{X} J+J D_{X} J\right] Y \\
\stackrel{!}{=} & D_{X} Y+\cos (\vartheta) T_{X} Y+\sin (\vartheta) T_{J X} Y \quad \text { with } \vartheta= \pm 2 \theta,
\end{aligned}
$$

where we have to determine $T \in \Gamma\left(T^{*} M \otimes \operatorname{End}(T M)\right)$.
Comparing Fourier-coefficients gives

$$
\begin{align*}
& J\left(D_{X} J\right) Y=S_{X} Y-J S_{X} J Y, \quad \text { or equivalently } \tag{3.2}\\
& -\left(D_{X} J\right) Y=J S_{X} Y+S_{X} J Y=\left\{S_{X}, J\right\} Y, \\
& T_{X} Y=\frac{1}{2}\left(S_{X} Y+J S_{X} J Y+J\left(D_{X} J\right) Y\right) \stackrel{(3.2)}{=} S_{X} Y, \tag{3.3}\\
& T_{J X} Y= \pm \frac{1}{2}\left(\left[J, S_{X}\right] Y-\left(D_{X} J\right) Y\right) \\
& \quad \stackrel{(3.2)}{=} \pm \frac{1}{2}\left(J S_{X} Y-S_{X} J Y+J S_{X} Y+S_{X} J Y\right)= \pm J S_{X} Y . \tag{3.4}
\end{align*}
$$

The last two equations yield the constraint on S

$$
S_{J X}= \pm J S_{X} Y
$$

and the first equation the one on D and S.
We suppose now the connection D to be complex, i.e. $D J=0$. Such a connection exists on every almost complex manifold (compare [11]).

Corollary 1. Given an almost complex manifold (M, J) with a flat connection ∇ and a decomposition of $\nabla=D+S$ in a connection D and a section S in $T^{*} M \otimes \operatorname{End}(T M)$, such that J is D-parallel, i.e. $D J=0$. Then $(T M, D, S)$ defines a $t t^{*}$-bundle, such that D^{θ} is linear equivalent to ∇^{θ} with factor $\alpha= \pm 2$ if and only if S satisfies

$$
S_{J X}= \pm J S_{X} \quad \text { and } \quad\left\{S_{X}, J\right\}=0
$$

Proof. The second constraint in Proposition 2 is for $D J=0$ the condition $\left\{S_{X}, J\right\}=0$. The first constraint of Proposition 2 is exactly $S_{J X}= \pm J S_{X} \stackrel{\left\{S_{X}, J\right\}=0}{=} \mp S_{X} J$.

We are now going to show some uniqueness results. Therefore we prove the
Lemma 1. Let (M, J) be an almost complex manifold. Given a connection ∇ on M which decomposes as $\nabla=D+S$, where D is a connection on M and S is a section in $T^{*} M \otimes \operatorname{End}(T M)$, such that J is D-parallel, i.e. $D J=0$ and S anticommutes with J, i.e. $\left\{S_{X}, J\right\}=0$ for all $X \in \Gamma(T M)$. Then S and D are uniquely given by

$$
\begin{equation*}
S_{X} Y=\frac{1}{2} J\left(\nabla_{X} J\right) Y \quad \text { and } \quad D_{X} Y=\nabla_{X} Y-S_{X} Y \quad \text { for } X, Y \in \Gamma(T M) . \tag{3.5}
\end{equation*}
$$

Otherwise, given a connection ∇ and define D and S by Eq. (3.5), then D and S satisfy $D J=0$ and $\left\{S_{X}, J\right\}=0$.

Proof. First we observe: $\nabla=D+S$ and $S_{X} J Y=\frac{1}{2} J\left(\nabla_{X} J\right) J Y=-\frac{1}{2} J^{2}\left(\nabla_{X} J\right) Y=-J S_{X} Y$, where the second equality follows from deriving $J^{2}=-I d$. Further it is

$$
\left(D_{X} J\right) Y=\left(\nabla_{X} J\right) Y-\left[S_{X}, J\right] \stackrel{\left\{S_{X}, J\right\}=0}{=}\left(\nabla_{X} J\right) Y+2 J S_{X}=0
$$

Now we prove the uniqueness: Suppose there exist D^{\prime} and S^{\prime} with the same properties. Then we get

$$
0=\left(D_{X}^{\prime} J\right) Y=\left(\nabla_{X} J\right) Y-\left[S_{X}^{\prime}, J\right] Y=\left(\nabla_{X} J\right) Y+2 J S_{X}^{\prime} Y
$$

and consequently

$$
S_{X}^{\prime} Y=\frac{1}{2} J\left(\nabla_{X} J\right) Y=S_{X} Y \quad \text { and } \quad D_{X}^{\prime} Y=\nabla_{X} Y-S_{X}^{\prime} Y=\nabla_{X} Y-S_{X} Y=D_{X} Y
$$

Summarizing Corollary 1 and Lemma 1 we find the following uniqueness result:
Theorem 1. Given an almost complex manifold (M, J) with a flat connection ∇ and a decomposition of $\nabla=D+S$ in a connection D and a section S in $T^{*} M \otimes \operatorname{End}(T M)$, such that J is D-parallel, i.e. $D J=0$. If $(T M, D, S)$ defines a $t t^{*}$-bundle, such that D^{θ} is linear equivalent to ∇^{θ} with factor $\alpha= \pm 2$, then D and S are uniquely determined by $S=\frac{1}{2} J(\nabla J)$ and $D=\nabla-S$.

Moreover, $(T M, D, S)$ as above defines a $t t^{*}$-bundle, such that D^{θ} is linear equivalent to ∇^{θ} with factor $\alpha= \pm 2$, if and only if J satisfies $\left(\nabla_{J X} J\right)= \pm J\left(\nabla_{X} J\right)$ and D and S are given by $S=\frac{1}{2} J(\nabla J)$ and $D=\nabla-S$.
Now we are going to give some classes of examples which satisfy the condition $S_{J X}= \pm J S_{X}$.
Proposition 3. Given an almost complex manifold (M, J) with a connection ∇ and let S be the section in $T^{*} M \otimes \operatorname{End}(T M)$ defined by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J) . \tag{3.6}
\end{equation*}
$$

If the pair (∇, J) satisfies one of the following conditions
(i) (∇, J) is special, i.e. $\left(\nabla_{X} J\right) Y=\left(\nabla_{Y} J\right) X$ for all $X, Y \in \Gamma(T M)$,
(ii) (∇, J) satisfies the nearly Kähler condition, i.e. $\left(\nabla_{X} J\right) Y=-\left(\nabla_{Y} J\right) X$ for all $X, Y \in \Gamma(T M)$,
then it holds that $S_{J X} Y=-J S_{X} Y$.
Proof. If the condition (i) or (ii) holds, we obtain the identity

$$
\begin{aligned}
\left(\nabla_{J X} J\right) Y & = \pm\left(\nabla_{Y} J\right) J X= \pm\left[-\nabla_{Y} X-J \nabla_{Y}(J X)\right] \\
& =\mp J\left[\nabla_{Y}(J X)-J \nabla_{Y} X\right]=\mp J\left(\nabla_{Y} J\right) X=-J\left(\nabla_{X} J\right) Y .
\end{aligned}
$$

The following calculation finishes the proof

$$
S_{J X} Y=\frac{1}{2} J\left(\nabla_{J X} J\right) Y=-\frac{1}{2} J^{2}\left(\nabla_{X} J\right) Y=-J S_{X} Y
$$

Proposition 4. Given a complex manifold (M, J) with a connection ∇ and let S be the section in $T^{*} M \otimes \operatorname{End}(T M)$ defined by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J) . \tag{3.7}
\end{equation*}
$$

If ∇ is (anti-)adapted, i.e. $\nabla_{J X} Y= \pm J \nabla_{X} Y$ for all holomorphic vector-fields X, Y, then it holds that $S_{J X} Y=$ $\pm J S_{X} Y$.

Proof. From ∇ (anti-)adapted we obtain for all holomorphic vector-fields X, Y :

$$
\left(\nabla_{J X} J\right) Y= \pm J\left(\nabla_{X} J\right) Y
$$

The following computation gives the proof

$$
S_{J X} Y=\frac{1}{2} J\left(\nabla_{J X} J\right) Y= \pm \frac{1}{2} J^{2}\left(\nabla_{X} J\right) Y= \pm J S_{X} Y
$$

Remark 2. One sees easily that condition (i) in Proposition 3 is the symmetry of $S_{X} Y$ and condition (ii) is its antisymmetry. We recall that if the connection ∇ is torsion free, flat and special then (M, J, ∇) is a special complex manifold, see [1,9]. $t t^{*}$-bundles coming from special complex manifolds and special Kähler manifolds were studied in [4].
Further we want to remark that the second condition in Proposition 3 arises in nearly Kählerian geometry and therefore is quite natural. These two geometries as solutions of $t t^{*}$-geometry are discussed later in this work.
Finally, the notion of adapted connections appeared in the study of decompositions on (para-holomorphic) vector bundles, compare for example [2] for the complex and [13] for the para-complex case.

4. Solutions on almost hermitian manifolds

In this section we consider almost complex manifolds (M, J) endowed with a flat connection ∇ such that (∇, J) is special or satisfies the nearly Kähler condition and analyze under which additional assumptions these define symplectic or metric $t t^{*}$-bundles.

Definition 3. An almost complex manifold (M, J) is called almost hermitian if there exists a pseudo-Riemannian metric g which is hermitian, i.e. it satifies $J^{*} g(\cdot, \cdot)=g(J \cdot, J \cdot)=g(\cdot, \cdot)$.

First, we recall a lemma from tensor-algebra:
Lemma 2. Let V be a vector-space, $\alpha \in T^{3}\left(V^{*}\right)$ an element in the third tensorial power of V^{*}, the dual space of V. Suppose that $\alpha(X, Y, Z)$ is symmetric (resp. anti-symmetric) in X, Y and Y, Z and $\alpha(X, Y, Z)$ is anti-symmetric (resp. symmetric) in X, Z then $\alpha=0$.
Proof. It is $\alpha(X, Y, Z)=\epsilon \alpha(Y, X, Z)=\epsilon \alpha(X, Z, Y)$ with $\epsilon \in\{ \pm 1\}$ which implies $\alpha(X, Y, Z)=\epsilon \alpha(Y, X, Z)=$ $\epsilon^{2} \alpha(Y, Z, X)=\epsilon^{3} \alpha(Z, Y, X)$. But further it holds $\alpha(X, Y, Z)=-\epsilon \alpha(Z, Y, X)$ and consequently $-\alpha(Z, Y, X)=$ $\epsilon^{2} \alpha(Z, Y, X)=\alpha(Z, Y, X)$. This shows $\alpha=0$.
The subsequent proposition shows that the condition to be special is not compatible with symplectic $t t^{*}$-bundles:
Proposition 5. Given an almost hermitian manifold (M, J, g) with a flat connection ∇, such that (∇, J) is special. Define S, a section in $T^{*} M \otimes \operatorname{End}(T M)$ by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J), \tag{4.1}
\end{equation*}
$$

then $(T M, D=\nabla-S, S)$ defines a $t t^{*}$-bundle. Suppose, that $(T M, D, S, \omega=g(J \cdot, \cdot))$ is a symplectic $t t^{*}$-bundle, then it is trivial, i.e. $S=0$.
Proof. In fact we know from Theorem 1 and Proposition 3, that ($T M, D, S$) is a $t t^{*}$-bundle. Suppose, that ($T M, D, S, \omega=g(J \cdot, \cdot)$) is a symplectic $t t^{*}$-bundle. To finish the proof, we define the tensor

$$
\alpha(X, Y, Z):=\omega\left(S_{X} Y, Z\right)=g\left(J S_{X} Y, Z\right)
$$

$\alpha(X, Y, Z)$ is symmetric in X, Y, since (∇, J) is special, i.e. ∇J is symmetric in X, Y. Further it holds that

$$
\begin{aligned}
\alpha(X, Y, Z) & =\omega\left(S_{X} Y, Z\right)=-\omega\left(Z, S_{X} Y\right) \\
& =-\omega\left(Z, S_{Y} X\right)=-\omega\left(S_{Y} Z, X\right)=-\omega\left(S_{Z} Y, X\right)=-\alpha(Z, Y, X)
\end{aligned}
$$

which is the anti-symmetry of $\alpha(X, Y, Z)$ in X, Z. Finally

$$
\begin{aligned}
\alpha(X, Y, Z) & =\omega\left(S_{X} Y, Z\right)=\omega\left(Y, S_{X} Z\right) \\
& =\omega\left(Y, S_{Z} X\right)=-\omega\left(S_{Z} X, Y\right)=-\alpha(Z, X, Y)=-\alpha(X, Z, Y),
\end{aligned}
$$

i.e. the anti-symmetry of $\alpha(X, Y, Z)$ in Y, Z.

Hence α vanishes and consequently S.

Otherwise, the nearly Kähler condition is not compatible with metric $t t^{*}$-bundles:
Proposition 6. Given an almost hermitian manifold (M, J, g) with a flat connection ∇, such that (∇, J) satisfies the nearly Kähler condition. Define S, a section in $T^{*} M \otimes \operatorname{End}(T M)$ by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J), \tag{4.2}
\end{equation*}
$$

then $(T M, D=\nabla-S, S)$ defines a $t t^{*}$-bundle. Suppose, that $(T M, D, S, g)$ is a metric $t t^{*}$-bundle, then it is trivial, i.e. $S=0$.

Proof. In fact we know from Theorem 1 and Proposition 3, that $(T M, D, S)$ is a $t t^{*}$-bundle. Suppose, that it is a metric $t t^{*}$-bundle. To finish the proof, we define the tensor

$$
\alpha(X, Y, Z):=g\left(S_{X} Y, Z\right) .
$$

$\alpha(X, Y, Z)$ is anti-symmetric in X, Y, since, by the nearly Kähler condition, ∇J is anti-symmetric in X, Y. Further it holds that

$$
\begin{aligned}
\alpha(X, Y, Z) & =g\left(S_{X} Y, Z\right)=g\left(Z, S_{X} Y\right) \\
& =-g\left(Z, S_{Y} X\right)=-g\left(S_{Y} Z, X\right)=g\left(S_{Z} Y, X\right)=\alpha(Z, Y, X)
\end{aligned}
$$

which is the symmetry of $\alpha(X, Y, Z)$ in X, Z. Finally

$$
\begin{aligned}
\alpha(X, Y, Z) & =g\left(S_{X} Y, Z\right)=g\left(Y, S_{X} Z\right) \\
& =-g\left(Y, S_{Z} X\right)=-g\left(S_{Z} X, Y\right)=-\alpha(Z, X, Y)=\alpha(X, Z, Y),
\end{aligned}
$$

i.e. the symmetry of $\alpha(X, Y, Z)$ in Y, Z.

Hence α vanishes by the above lemma and so does S.
This theorem gives solutions of symplectic $t t^{*}$-bundles on the tangent bundle, which are more general then the later discussed nearly Kähler manifolds in the sense, that we admit connections ∇ having torsion, but more special in the sense, that our connection ∇ has to be flat:

Theorem 2. Given an almost hermitian manifold (M, J, g) with a flat metric connection ∇, such that (∇, J) satisfies the nearly Kähler condition. Define S, a section in $T^{*} M \otimes \operatorname{End}(T M)$ by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J), \tag{4.3}
\end{equation*}
$$

then $(T M, D=\nabla-S, S, \omega=g(J \cdot, \cdot))$ defines a symplectic $t t^{*}$-bundle. Moreover, it holds $D J=0$ and $T^{D}=T^{\nabla}-2 S$.

Proof. In fact we know from Theorem 1 and Proposition 3, that ($T M, D, S$) is a $t t^{*}$-bundle. It remains to check that $D \omega=0$ and that S is ω-symmetric.
First we remark, that, since g is hermitian and $\nabla g=0, \nabla_{X} J$ is skew-symmetric with respect to g. Using this we show by the following calculation, that S is skew-symmetric with respect to g :

$$
\begin{aligned}
2 g\left(S_{X} Y, Z\right) & =g\left(J\left(\nabla_{X} J\right) Y, Z\right)=-g\left(\left(\nabla_{X} J\right) Y, J Z\right) \\
& =g\left(Y,\left(\nabla_{X} J\right) J Z\right)=-g\left(Z, J\left(\nabla_{X} J\right) Y\right)=-2 g\left(Y, S_{X} Z\right) .
\end{aligned}
$$

The definition of $\omega=g(J \cdot, \cdot)$ and $\left\{S_{X}, J\right\}=0$ yield the ω-symmetry of S_{X}. Further it holds that $D=\nabla-\frac{1}{2} J \nabla J$, which implies

$$
D J=\nabla J-\frac{1}{2}[J \nabla J, J]=0 .
$$

This proves $D \omega=0$ if and only if $D g=0$. But $\nabla g=0$ and S is skew-symmetric with respect to g, so g is parallel for $D=\nabla-S$. This shows that ($T M, D=\nabla-S, S, \omega$) is a symplectic $t t^{*}$-bundle.
Calculating the torsion we find $T^{D}(X, Y)=T^{\nabla}(X, Y)-S_{X} Y+S_{Y} X=T^{\nabla}(X, Y)-2 S_{X} Y$.

We recall the definition of special complex and special Kähler manifolds of [1,9]:
Definition 4. A special Kähler manifold consists of the data (M, J, g, ∇) where (M, J, g) is a Kähler manifold with Kähler-form ω satisfying $\nabla \omega=0$ and (M, J, ∇) is a special complex manifold, i.e. (M, J) is a complex manifold endowed with a flat and torsion-free connection ∇ such that (∇, J) is special.

The following theorem gives solutions of metric $t t^{*}$-bundles on the tangent bundle, which are more general than special Kähler manifolds in the sense, that we admit connections ∇ with torsion.

Theorem 3. Given an almost hermitian manifold (M, J, g) with a flat connection ∇, such that (∇, J) is special and the two-form $\omega=g(J \cdot, \cdot)$ is ∇-parallel. Define S, a section in $T^{*} M \otimes \operatorname{End}(T M)$, by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J), \tag{4.4}
\end{equation*}
$$

then $(T M, D=\nabla-S, S, g)$ defines a metric $t t^{*}$-bundle. Moreover, it holds that $D J=0$ and $T^{D}=T^{\nabla}$.
Suppose, that ∇ is torsion free, then D is the Levi-Civita connection of $g,(M, J, g)$ is a Kähler manifold and (M, J, g, ∇) is a special Kähler manifold.

Proof. In fact we know from Theorem 1 and Proposition 3, that $(T M, D, S)$ is a $t t^{*}$-bundle. It remains to check $D g=0$ and that S is g-symmetric.

First we remark that $\omega(J X, Y)=-\omega(X, J Y)$ as g is hermitian. This yields using $\nabla \omega=0$ the ω-skew-symmetry of $\nabla_{X} J$, which implies that $S_{X}=\frac{1}{2} J(\nabla J)$ is ω-skew-symmetric, since $J\left(\nabla_{X} J\right)=-\left(\nabla_{X} J\right) J$. Finally $\left\{S_{X}, J\right\}=0$ shows the g-symmetry of S_{X}.
Further it is

$$
D J=\nabla J-\frac{1}{2}[J \nabla J, J]=0
$$

and consequently $D g=0$ is equivalent to $D \omega=0$.
From $\nabla \omega=0$ and the ω-skew-symmetry of S it follows, that $D \omega=(\nabla-S) \omega=0$.
The symmetry of ∇J, i.e. $\left(\nabla_{X} J\right) Y=\left(\nabla_{Y} J\right) X$ for all $X, Y \in T M$ implies $S_{X} Y=S_{Y} X$ and consequently $T^{D}=T^{\nabla}$. Suppose now that ∇ is torsion free. This shows, that $D=\nabla-S$ is torsion free and consequently the Levi-Civita connection of g. Further the equation $\nabla \omega=0$ implies $d \omega=0$ since ∇ is torsion free. Hence (M, J, g) is Kähler. In addition (M, J, ∇) is special complex by the conditions on ∇ and J. Therefore (M, J, g, ∇) is a special Kähler manifold, as it holds $\nabla \omega=0$.

In [4] we studied special Kähler solutions of $t t^{*}$-geometry in more detail.
Now we want to apply the above results to nearly Kähler manifolds. In order to do this we recall some notions and results of nearly Kähler geometry (compare for example Friedrich [10] and Nagy [15,16]):

Definition 5. An almost hermitian manifold (M, J, g) is called a nearly Kähler manifold, if its Levi-Civita connection $\nabla=\nabla^{g}$ satisfies the equation

$$
\begin{equation*}
\left(\nabla_{X} J\right) Y=-\left(\nabla_{Y} J\right) X, \quad \forall X, Y \in \Gamma(T M) . \tag{4.5}
\end{equation*}
$$

A nearly Kähler manifold is called strict, if $\nabla J \neq 0$.
We recall that the tensor ∇J defines two three-forms A, B

$$
A(X, Y, Z):=g\left(\left(\nabla_{X} J\right) Y, Z\right) \quad \text { and } \quad B(X, Y, Z):=g\left(\left(\nabla_{X} J\right) Y, J Z\right) \quad \text { with } X, Y, Z \in T M,
$$

which are both real three-forms of type $(3,0)+(0,3)$.
A connection of particular importance in nearly Kähler geometry is the connection $\bar{\nabla}$ defined by

$$
\begin{equation*}
\bar{\nabla}_{X} Y:=\nabla_{X} Y+\frac{1}{2}\left(\nabla_{X} J\right) J Y, \quad \text { for all } X, Y \in \Gamma(T M) . \tag{4.6}
\end{equation*}
$$

We may remark, that $\bar{\nabla}$ is the unique connection with totally skew-symmetric torsion (compare [10]).

The torsion of the connection $\bar{\nabla}$ is given by

$$
\begin{equation*}
T^{\bar{\nabla}}(X, Y)=\left(\nabla_{X} J\right) J Y, \quad \text { for all } X, Y \in \Gamma(T M) \tag{4.7}
\end{equation*}
$$

and it vanishes if and only if (M, J, g) is a Kähler manifold.
Corollary 2. Given a nearly Kähler manifold (M, J, g) such that its Levi-Civita connection ∇ is flat and let S be the section in $T^{*} M \otimes \operatorname{End}(T M)$ defined by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J) \tag{4.8}
\end{equation*}
$$

then $(T M, \bar{\nabla}, S)$ defines a $t t^{*}$-bundle. Suppose, that $(T M, \bar{\nabla}, S, g)$ is a metric $t t^{*}$-bundle, then it is trivial, i.e. $S=0$ and consequently (M, J, g) is Kähler.

Proof. By setting $D=\bar{\nabla}$ we are in the situation of Proposition 6.
Theorem 4. Given a nearly Kähler manifold (M, J, g) such that its Levi-Civita connection ∇ is flat. Let S be the section in $T^{*} M \otimes \operatorname{End}(T M)$ defined by

$$
\begin{equation*}
S:=\frac{1}{2} J(\nabla J), \tag{4.9}
\end{equation*}
$$

then $(T M, \bar{\nabla}, S, \omega:=g(J \cdot, \cdot))$ is a symplectic $t t^{*}$-bundle. Further it holds

$$
\begin{equation*}
B(X, Y, Z)=-2 g\left(S_{X} Y, Z\right) \quad \text { and } \quad \bar{\nabla} J=0 \tag{4.10}
\end{equation*}
$$

Proof. By setting $D=\bar{\nabla}$ we are in the situation of Theorem 2. In addition it holds that

$$
2 g\left(S_{X} Y, Z\right)=g\left(J\left(\nabla_{X} J\right) Y, Z\right)=-B(X, Y, Z)
$$

A constructive classification of nearly Kähler manifolds with flat Levi-Civita connection was given in a common paper [5] with V. Cortés.

5. Pluriharmonic maps from almost complex manifolds into pseudo-Riemannian manifolds

In this section we generalize the notion of a pluriharmonic map to maps from almost complex manifolds to pseudo-Riemannian manifolds. Afterwards we show that maps admitting a generalisation of an associated family (compare [8]) give rise to a pluriharmonic map and we give conditions under which a pluriharmonic map is harmonic. Let (M, J) be an almost complex manifold of real dimension $2 n$. It is well-known (compare [11]) that on every almost complex manifold there exists a complex connection with torsion $T=\frac{1}{4} N_{J}$ where

$$
N_{J}(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

is the Nijenhuis ${ }^{2}$ tensor of J.
Definition 6. Let (M, J) be an almost complex manifold. A connection D on the tangent bundle of M is called nice if it is complex and its torsion satisfies $4 T=N_{J}$.

As the reader may check all statements of this section rest true by replacing the condition $4 T=N_{J}$ by $-4 T=N_{J}$. Next, we introduce the notion of a pluriharmonic map from an almost complex manifold:

Definition 7. Let (M, J, D) be an almost complex manifold endowed with a nice connection D on $T M$ and N a smooth manifold endowed with a connection ∇^{N}. Denote by ∇ the connection on $T^{*} M \otimes f^{*} T N$ which is induced by D and ∇^{N}.

[^2]A smooth map $f: M \rightarrow N$ is pluriharmonic if and only if it satisfies the equation

$$
\begin{equation*}
(\nabla \mathrm{d} f)^{1,1}=0 \tag{5.1}
\end{equation*}
$$

Remark 3. We may remark, that for a complex manifold (M, J) and a pseudo-Riemannian target manifold (N, h) with its Levi-Civita connection ∇^{h} the pluriharmonic equation (5.1) does not depend on the connection D if D is chosen in an appropriate class (compare [4]). In fact nice connections on complex manifolds belong to this class. A very often considered case is Kähler manifolds (M, J, g), where D is taken to be the Levi-Civita connection.

As preparation for associated families we recall an integrability condition satisfied by the differential of a smooth map. Let N be a smooth manifold with a connection ∇^{N} on its tangent bundle having torsion tensor T^{N}. Given a second smooth manifold M and a smooth map $f: M \rightarrow N$, the differential $F:=\mathrm{d} f: T M \rightarrow f^{*} T N=E$ induces a vector bundle homomorphism between the tangent bundle of M and the pull-back of $T N$ via f. The torsion T^{N} of N induces a bundle homomorphism $T^{E}: \Lambda^{2} E \rightarrow E$ satisfying the identity

$$
\begin{equation*}
\nabla_{V}^{E} F(W)-\nabla_{W}^{E} F(V)-F([V, W])=T^{E}(F(V), F(W)), \tag{5.2}
\end{equation*}
$$

where $\nabla^{E}=f^{*} \nabla^{N}$ denotes the pull-back connection, i.e. the connection which is induced on E by ∇^{N} and where $V, W \in \Gamma(T M)$.
In the rest of the section we denote by D a nice connection on the almost complex manifold (M, J). Under this assumption we restate the condition (5.2)

$$
\begin{align*}
T^{E}(F(V), F(W)) & =\nabla_{V}^{E} F(W)-\nabla_{W}^{E} F(V)-F([V, W]) \\
& =\nabla_{V}^{E} F(W)-\nabla_{W}^{E} F(V)-F\left(D_{V} W\right)+F\left(D_{W} V\right)+F(T(V, W)) \\
& =\nabla_{V}^{E} F(W)-\nabla_{W}^{E} F(V)-F\left(D_{V} W\right)+F\left(D_{W} V\right)+\frac{1}{4} F\left(N_{J}(V, W)\right) \\
& =\left(\nabla_{V} F\right) W-\left(\nabla_{W} F\right) V+\frac{1}{4} F\left(N_{J}(V, W)\right), \tag{5.3}
\end{align*}
$$

where ∇ is the connection induced on $T^{*} M \otimes E$ by D and ∇^{E}.
Later in this work we consider the case where N is a pseudo-Riemannian symmetric space with its Levi-Civita connection ∇^{N}.
Given an angle $\alpha \in[0,2 \pi]$ we define $\mathcal{R}_{\alpha}: T M \rightarrow T M$ as

$$
\mathcal{R}_{\alpha}(X)=\cos (\alpha) X+\sin (\alpha) J X .
$$

This defines a parallel endomorphism field on the tangent bundle $T M$ of M. The eigenvalues of which are $e^{\sqrt{-1} \alpha}$ on $T^{1,0} M$ and $e^{-\sqrt{-1} \alpha}$ on $T^{0,1} M$, as one sees easily.
An associated family for f is a family of maps $f_{\alpha}: M \rightarrow N, \alpha \in[0,2 \pi]$, such that

$$
\begin{equation*}
\Phi_{\alpha} \circ \mathrm{d} f_{\alpha}=\mathrm{d} f \circ \mathcal{R}_{\alpha}, \quad \forall \alpha \in \mathbb{R}, \tag{5.4}
\end{equation*}
$$

for some bundle isomorphism $\Phi_{\alpha}: f_{\alpha}^{*} T N \rightarrow f^{*} T N, \alpha \in \mathbb{R}$, which is parallel with respect to ∇^{N} in the sense that

$$
\Phi_{\alpha} \circ\left(f_{\alpha}^{*} \nabla^{N}\right)=\left(f^{*} \nabla^{N}\right) \circ \Phi_{\alpha} .
$$

One observes, that each map f_{α} of an associated family itself admits an associated family.
Theorem 5. Let (M, J) be an almost complex manifold endowed with a nice connection D, N a smooth manifold with a torsion-free connection ∇^{N} and $f:(M, D, J) \rightarrow\left(N, \nabla^{N}\right)$ a smooth map admitting an associated family f_{α}, then f is pluriharmonic. More precisely, each map of the associated family f_{α} is pluriharmonic.
Proof. As Φ_{α} is parallel with respect to ∇^{N}, ∇^{N} is torsion-free and D is nice, we can apply Eq. (5.3) to the family $\mathrm{d} f_{\alpha}=F_{\alpha}=\Phi_{\alpha}^{-1} \circ \mathrm{~d} f \circ \mathcal{R}_{\alpha}$ to obtain

$$
\left(\nabla_{V} F_{\alpha}\right) W-\left(\nabla_{W} F_{\alpha}\right) V+\frac{1}{4} F_{\alpha}\left(N_{J}(V, W)\right)=0 .
$$

Since \mathcal{R}_{α} is D-parallel we obtain

$$
\left(\nabla_{X} F_{\alpha}\right)=\Phi_{\alpha}^{-1} \circ\left(\nabla_{X} F\right) \circ \mathcal{R}_{\alpha}
$$

If $Z=X+\mathrm{i} J X$ and $W=Y-\mathrm{i} J Y$ have different type it holds $N_{J}(Z, W)=0$, where we extended the Nijenhuis tensor complex linearly. This implies

$$
\left(\nabla_{V} F_{\alpha}\right) W=\left(\nabla_{W} F_{\alpha}\right) V, \quad \forall \alpha \in[0,2 \pi]
$$

and using this we obtain

$$
\begin{aligned}
& \left(\nabla_{Z} F_{\alpha}\right) W=e^{\sqrt{-1} \alpha} \Phi_{\alpha}^{-1}\left(\nabla_{Z} F\right) W \\
& \left(\nabla_{W} F_{\alpha}\right) Z=e^{-\sqrt{-1} \alpha} \Phi_{\alpha}^{-1}\left(\nabla_{W} F\right) Z=e^{-\sqrt{-1} \alpha} \Phi_{\alpha}^{-1}\left(\nabla_{Z} F\right) W
\end{aligned}
$$

for all $\alpha \in[0,2 \pi]$. Since this should coincide, it follows that $(\nabla \mathrm{d} f)^{(1,1)}=0$, i.e. $f:(M, D, J) \rightarrow\left(N, \nabla^{N}\right)$ is pluriharmonic. The rest follows, since each map of the associated family f_{α} admits an associated family $g_{\beta}=$ $f_{(\alpha+\beta) \bmod 2 \pi}$.

This motivates the definition
Definition 8. Let (M, J) be an almost complex manifold endowed with a nice connection D, N a smooth manifold endowed with a torsion-free connection ∇^{N}. A smooth map $f:(M, D, J) \rightarrow\left(N, \nabla^{N}\right)$ is said to be \mathbb{S}^{1} pluriharmonic if and only if it admits an associated family.

Given a hermitian metric g on M then in general a nice connection D is not the Levi-Civita connection ∇^{g} of g. Therefore the pluriharmonic Eq. (5.1) does not imply the harmonicity of f. But if the tensor $D-\nabla^{g}$ is tracefree the pluriharmonic equation implies the harmonic equation. This is true in the case of a special Kähler manifold (M, J, g, ∇) and for a nearly Kähler manifold, where $D=\bar{\nabla}$ and $\bar{\nabla}-\nabla^{g}$ is skew-symmetric.

Proposition 7. Let (M, J, g) be an almost hermitian manifold endowed with a nice connection D, N a pseudoRiemannian manifold with its Levi-Civita connection ∇^{N}. Suppose that the tensor $S=\nabla^{g}-D$ is trace free. Then a pluriharmonic map $f: M \rightarrow N$ is harmonic.

Proof. We consider

$$
\begin{aligned}
\operatorname{tr}_{g}(\nabla \mathrm{~d} f) & =\sum_{i} g\left(e_{i}, e_{i}\right)\left[\nabla_{e_{i}}^{E} \mathrm{~d} f\left(e_{i}\right)-\mathrm{d} f\left(D_{e_{i}} e_{i}\right)\right] \\
& =\sum_{i} g\left(e_{i}, e_{i}\right)\left[\nabla_{e_{i}}^{E} \mathrm{~d} f\left(e_{i}\right)-\mathrm{d} f\left(\left(\nabla^{g}-S\right)_{e_{i}} e_{i}\right)\right] \\
& =\sum_{i} g\left(e_{i}, e_{i}\right)\left[\nabla_{e_{i}}^{E} \mathrm{~d} f\left(e_{i}\right)-\mathrm{d} f\left(\nabla_{e_{i}}^{g} e_{i}\right)\right] \\
& =\operatorname{tr}_{g}\left(\tilde{\nabla}^{g} \mathrm{~d} f\right)
\end{aligned}
$$

where $\tilde{\nabla}^{g}$ is the connection induced on $T^{*} M \otimes E$ by ∇^{g} and ∇^{E} and e_{i} is an orthogonal basis for g on $T M$. But from the pluriharmonic equation and since g is hermitian we obtain

$$
\operatorname{tr}_{g}(\nabla \mathrm{~d} f)=\operatorname{tr}_{g}\left(\nabla \mathrm{~d} f^{(1,1)}\right)=0
$$

6. Related pluriharmonic and harmonic maps

6.1. The classifying map of a flat nearly Kähler manifold

In this section we consider simply connected almost hermitian manifolds (M, J, g) endowed with a flat metric connection ∇ such that (∇, J) satisfies the nearly Kähler condition.
In particular, simply connected flat nearly Kähler manifolds $\left(M^{2 n}, J, g\right)$, i.e. nearly Kähler manifolds (M, J, g) with flat Levi-Civita connection ∇^{g} are of this type. Since (M, g, ∇) is simply connected and flat, we may identify by
fixing a ∇-parallel frame s_{0} its tangent bundle $T M$ with $(M \times V,\langle\cdot, \cdot\rangle)$, where $V=\mathbb{C}^{n}=\left(\mathbb{R}^{2 n}, j_{0}\right)$ is endowed with the standard scalar product $\langle\cdot, \cdot\rangle$ of the same hermitian signature (p, q) as the hermitian metric g.
The compatible complex structure J defines via this identification a map

$$
J: M \rightarrow \mathcal{J}(V,\langle\cdot, \cdot\rangle),
$$

where $\mathcal{J}(V,\langle\cdot, \cdot\rangle)$ is the set of complex structures on V which are compatible with $\langle\cdot, \cdot\rangle$ and the orientation of $V=\mathbb{R}^{2 n}$. We shortly explain the differential geometry of this set:
One can consider $\mathcal{J}(V,\langle\cdot, \cdot\rangle)$ as a subset in the vector space $\mathfrak{s o}(2 p, 2 q)=\mathfrak{s o}(V) \subset \operatorname{Mat}\left(\mathbb{R}^{2 n}\right)$ characterized by the set of $n(2 n+1)$ equations

$$
\begin{equation*}
f(j)=-\mathbb{1}_{2 n}, \tag{6.1}
\end{equation*}
$$

where $f: \operatorname{Mat}\left(\mathbb{R}^{2 n}\right) \rightarrow \operatorname{Mat}\left(\mathbb{R}^{2 n}\right)$ is given by $f: A \mapsto A^{2}$. The differential of this map is $\mathrm{d} f_{A}(H)=\{A, H\}$ for $A, H \in \operatorname{Mat}\left(\mathbb{R}^{2 n}\right)$. In addition, $\mathrm{d} f$ has constant rank in points j satisfying Eq. (6.1), since one sees

$$
\begin{aligned}
& \operatorname{kerd} f_{j}=\{A \in \mathfrak{s o}(V) \mid\{j, A\}=0\} \\
& \operatorname{imd} f_{j} \cong\{A \in \mathfrak{s o}(V) \mid[j, A]=0\} \cong \mathfrak{u}(p, q)
\end{aligned}
$$

Applying the regular value theorem $\mathcal{J}(V,\langle\cdot, \cdot\rangle)$ is shown to be a submanifold of $\mathfrak{s o}(V)$. Its tangent space at $j \in \mathcal{J}(V,\langle\cdot, \cdot\rangle)$ is

$$
\begin{equation*}
T_{j} \mathcal{J}(V,\langle\cdot, \cdot\rangle)=\operatorname{ker} \mathrm{d} f_{j}=\{A \in \mathfrak{s o}(V) \mid\{j, A\}=0\} \tag{6.2}
\end{equation*}
$$

Moreover, $\mathcal{J}(V,\langle\cdot, \cdot\rangle)$ can be identified with the pseudo-Riemannian symmetric space $S O_{0}(2 p, 2 q) / U(p, q)$, where $S O_{0}(2 p, 2 q)$ is the identity component of the special pseudo-orthogonal group $S O(2 p, 2 q)$ and $U(p, q)$ is the unitary group of signature (p, q), by the map

$$
\begin{aligned}
& \Phi: S O_{0}(2 p, 2 q) / U(p, q) \rightarrow \mathcal{J}(V,\langle\cdot, \cdot\rangle), \\
& g K \mapsto g j_{0} g^{-1},
\end{aligned}
$$

which maps the canonical base point $o=e K$ to j_{0}.
Any $j \in \mathcal{J}(V,\langle\cdot, \cdot\rangle)$ defines a symmetric decomposition of $\mathfrak{s o}(V)$ by

$$
\begin{aligned}
& \mathfrak{p}(j)=\{A \in \mathfrak{s o}(V) \mid\{j, A\}=0\}, \\
& \mathfrak{k}(j)=\{A \in \mathfrak{s o}(V) \mid[j, A]=0\} \cong \mathfrak{u}(p, q) .
\end{aligned}
$$

In particular $\mathfrak{k}\left(j_{0}\right)=\mathfrak{u}(p, q)$. Moreover, one observes $T_{j} \mathcal{J}(V,\langle\cdot, \cdot\rangle)=\mathfrak{p}(j)$.
Let $\tilde{j} \in S O_{0}(2 p, 2 q) / U(p, q)$ and $j=\Phi(\tilde{j})$, then $T_{\tilde{j}} S O_{0}(2 p, 2 q) / U(p, q)$ is canonically identified with $\mathfrak{p}(j)$. We determine now the differential of the above identification.
Proposition 8. Let $\Psi=\Phi^{-1}: \mathcal{J}(V,\langle\cdot, \cdot\rangle) \rightarrow S O_{0}(2 p, 2 q) / U(p, q)$. Then it holds at $j \in \mathcal{J}(V,\langle\cdot, \cdot\rangle)$

$$
\begin{equation*}
\mathrm{d} \Psi: T_{j} \mathcal{J}(V,\langle\cdot, \cdot\rangle) \ni X \mapsto-\frac{1}{2} j^{-1} X \in \mathfrak{p}(j) \tag{6.3}
\end{equation*}
$$

This can be used to relate the differential of a map

$$
J: M \rightarrow \mathcal{J}(V,\langle\cdot, \cdot\rangle)
$$

and a map

$$
\tilde{J}=\Psi \circ J: M \rightarrow S O_{0}(2 p, 2 q) / U(p, q)
$$

by

$$
\mathrm{d} \tilde{J}=-\frac{1}{2} J^{-1} \mathrm{~d} J
$$

We remember that under the above assumptions (TM,D=$\left.\nabla-S, S=\frac{1}{2} J(\nabla J), \omega=g(J \cdot, \cdot)\right)$ defines a symplectic $t t^{*}$-bundle.

Theorem 6. Let (M, J, g) be a simply connected almost hermitian manifold endowed with a flat metric connection ∇ such that (∇, J) satisfies the nearly Kähler condition, then $\left(T M, D=\nabla-S, S=\frac{1}{2} J(\nabla J), \omega=g(J \cdot, \cdot)\right)$ defines a symplectic $t t^{*}$-bundle and the matrix of J in a D^{θ}-flat frame $s^{\theta}=\left(s_{i}^{\theta}\right)$ defines an \mathbb{S}^{1}-pluriharmonic map $\tilde{J}^{\theta}: M \rightarrow \mathcal{J}(V,\langle\cdot, \cdot\rangle) \rightarrow S O_{0}(2 p, 2 q) / U(p, q)$.
In particular, given a nice connection D on M the map $\tilde{J}^{\theta}:(M, J, D) \rightarrow S O_{0}(2 p, 2 q) / U(p, q)$ is pluriharmonic.
Proof. We observe $D^{\theta} g=0$ since $\nabla g=0$ and $S_{X}^{\theta}:=\cos (\theta) S_{X}+\sin (\theta) S_{J X}$ takes values in $\mathfrak{s o}(V)$. Therefore we can choose for each θ the D^{θ}-flat frame s^{θ} orthonormal, such that $s^{\theta=0}=s_{0}$. This yields using $D J=0$ (compare Theorem 2)

$$
X . g\left(J s_{i}^{\theta}, s_{j}^{\theta}\right)=g\left(D_{X}^{\theta}\left(J s_{i}^{\theta}\right), s_{j}^{\theta}\right)=g\left(\left(D_{X}^{\theta} J\right) s_{i}^{\theta}, s_{j}^{\theta}\right)=g\left(\left[S_{X}^{\theta}, J\right] s_{i}^{\theta}, s_{j}^{\theta}\right)=-2 g\left(J S_{X}^{\theta} s_{i}^{\theta}, s_{j}^{\theta}\right)
$$

Let $S^{s^{\theta}}, J^{s^{\theta}}$ be the representations of S and J in the frame s^{θ}, then

$$
\left(J^{s^{\theta}}\right)^{-1} X\left(J^{s^{\theta}}\right)=-2 S^{s^{\theta}}
$$

or

$$
\mathrm{d} \tilde{J}^{\theta}=\left(s^{\theta}\right)^{-1} \circ S^{\theta} \circ s^{\theta},
$$

where the frame s^{θ} is seen as a map $s^{\theta}: M \times V \rightarrow T M$. This shows for $X \in \Gamma(T M)$

$$
\begin{aligned}
\mathrm{d} \tilde{J}^{\theta}(X) & =\left(s^{\theta}\right)^{-1} \circ S_{X}^{\theta} \circ\left(s^{\theta}\right)=\left(s^{\theta}\right)^{-1} \circ S_{\mathcal{R}_{\theta} X} \circ\left(s^{\theta}\right) \\
& =\left(\left(s^{\theta}\right)^{-1} s^{0}\right) \circ \mathrm{d} \tilde{J}\left(\mathcal{R}_{\theta} X\right) \circ\left(\left(s^{0}\right)^{-1} s^{\theta}\right) \\
& =A d_{\alpha_{\theta}}^{-1} \circ \mathrm{~d} \tilde{J}\left(\mathcal{R}_{\theta} X\right)=\Phi_{\theta}^{-1} \circ \mathrm{~d} \tilde{J}\left(\mathcal{R}_{\theta} X\right),
\end{aligned}
$$

where $\alpha_{\theta}=\left(s^{\theta}\right)^{-1} s^{0}$ is the frame change from s_{0} to s_{θ} and $\Phi_{\theta}=A d_{\alpha_{\theta}}$ which is parallel with respect to the LeviCivita connection on $S O_{0}(2 p, 2 q) / U(p, q)$. This shows, that \tilde{J}^{θ} is \mathbb{S}^{1}-pluriharmonic. Given a nice connection D on M Theorem 5 shows that \tilde{J}^{θ} is pluriharmonic.
We emphasize the nearly Kähler setting:
Corollary 3. Let (M, J, g) be a flat nearly Kähler manifold and $\left(T M, \bar{\nabla}=\nabla^{g}-S, S=\frac{1}{2} J(\nabla J), \omega(\cdot, \cdot)=g(J \cdot, \cdot)\right)$ the associated symplectic $t t^{*}$-bundle, then the matrix of J in a D^{θ}-flat frame $s^{\theta}=\left(s_{i}^{\theta}\right)$ defines an \mathbb{S}^{1}-pluriharmonic map $\tilde{J}^{\theta}: M \rightarrow \mathcal{J}(V,\langle\cdot, \cdot\rangle) \rightarrow S O_{0}(2 p, 2 q) / U(p, q)$.
For nearly Kähler manifolds we have more precise information about the map \tilde{J}^{θ} :
Theorem 7. Let (M, J, g) be a flat nearly Kähler manifold and $\left(T M, \bar{\nabla}=\nabla^{g}-S, S=\frac{1}{2} J(\nabla J), \omega(\cdot, \cdot)=g(J \cdot, \cdot)\right)$ the associated symplectic $t t^{*}$-bundle. Then the connection $\bar{\nabla}$ is nice and the matrix of J in a D^{θ}-flat frame s ${ }^{\theta}=\left(s_{i}^{\theta}\right)$ defines a pluriharmonic map $\tilde{J}^{\theta}:(M, J, \bar{\nabla}) \rightarrow \mathcal{J}(V,\langle\cdot, \cdot\rangle) \rightarrow S O_{0}(2 p, 2 q) / U(p, q)$. Moreover, the map \tilde{J}^{θ} is harmonic.
Proof. First we show, that $\bar{\nabla}$ is nice. Therefore we rewrite the Nijenhuis tensor

$$
\begin{aligned}
N_{J}(X, Y) & =\left(\nabla_{J X} J\right) Y-\left(\nabla_{J Y} J\right) X-J\left(\nabla_{X} J\right) Y+J\left(\nabla_{Y} J\right) X \\
& =-4 J\left(\nabla_{X} J\right) Y,
\end{aligned}
$$

where the second equality follows from the nearly Kähler condition and by

$$
\left(\nabla_{J X} J\right) Y=-\left(\nabla_{Y} J\right) J X=J\left(\nabla_{Y} J\right) X=-J\left(\nabla_{X} J\right) Y
$$

But the torsion of $\bar{\nabla}$ is by Eq. (4.7)

$$
T^{\bar{\nabla}}(X, Y)=-J\left(\nabla_{X} J\right) Y
$$

This shows that $\bar{\nabla}$ is nice.
By Corollary 3 the map $\dot{\tilde{J}}^{\theta}$ is \mathbb{S}^{1}-pluriharmonic. Since $\bar{\nabla}$ is nice, Theorem 5 implies that \tilde{J}^{θ} is pluriharmonic. From the skew-symmetry of S and Proposition 7 we obtain that \tilde{J}^{θ} is harmonic.

6.2. The dual Gauß map of a special Kähler manifold

In this subsection we consider a simply connected almost hermitian manifold (M, J, g) with a flat connection ∇, such that (∇, J) is special and the two-form $\omega=g(J \cdot, \cdot)$ is ∇-parallel.
Using the flat connection ∇ we identify by fixing a ∇-parallel symplectic frame s_{0} the tangent space ($T M, \omega$) with ($M \times V, \omega_{0}$) where $V=\mathbb{R}^{2 n}$ and ω_{0} is its standard symplectic form.
The compatible complex structure J is seen as a map

$$
J: M \rightarrow \mathcal{J}\left(V, \omega_{0}\right),
$$

where $\mathcal{J}\left(V, \omega_{0}\right)$ is the set of complex structures on V which are compatible with ω_{0}.
Now we discuss the differential geometry of this set:
First we consider $\mathcal{J}\left(V, \omega_{0}\right)$ as a subset of the vector space $\mathfrak{s p}\left(\mathbb{R}^{2 n}\right) \subset \operatorname{Mat}\left(\mathbb{R}^{2 n}\right)$ characterized by the set of equations

$$
\begin{equation*}
f(j)=-\mathbb{1}_{2 n}, \tag{6.4}
\end{equation*}
$$

where $f: \operatorname{Mat}\left(\mathbb{R}^{2 n}\right) \rightarrow \operatorname{Mat}\left(\mathbb{R}^{2 n}\right)$ is given by $f: A \mapsto A^{2}$. The differential of this map is $\mathrm{d} f_{A}(H)=\{A, H\}$ for $A, H \in \operatorname{Mat}\left(\mathbb{R}^{2 n}\right)$. In addition, $\mathrm{d} f$ has constant rank in points j satisfying Eq. (6.4), since one sees

$$
\begin{aligned}
& \operatorname{kerd} f_{j}=\left\{A \in \mathfrak{s p}\left(\mathbb{R}^{2 n}\right) \mid\{j, A\}=0\right\} \\
& \operatorname{imd} f_{j} \cong\left\{A \in \mathfrak{s p}\left(\mathbb{R}^{2 n}\right) \mid[j, A]=0\right\} \cong \mathfrak{u}(p, q)
\end{aligned}
$$

Applying the regular value theorem we obtain that $\mathcal{J}\left(V, \omega_{0}\right)$ is a submanifold of $\mathfrak{s p}\left(\mathbb{R}^{2 n}\right)$. Its tangent space at $j \in \mathcal{J}\left(V, \omega_{0}\right)$ is

$$
\begin{equation*}
T_{j} \mathcal{J}\left(V, \omega_{0}\right)=\operatorname{ker} \mathrm{d} f_{j}=\left\{A \in \mathfrak{s p}\left(\mathbb{R}^{2 n}\right) \mid\{j, A\}=0\right\} . \tag{6.5}
\end{equation*}
$$

In addition the manifold $\mathcal{J}\left(V, \omega_{0}\right)$ can be identified with the pseudo-Riemannian symmetric space $\operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$, where (p, q) is the hermitian signature of the hermitian metric $g(\cdot, \cdot)=\omega(J \cdot, \cdot)$, by the map

$$
\begin{aligned}
& \Phi: \operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q) \rightarrow \mathcal{J}\left(V, \omega_{0}\right), \\
& g K \mapsto g j_{0} g^{-1},
\end{aligned}
$$

which maps the canonical base point $o=e K$ to j_{0}.
Any $j \in \mathcal{J}\left(V, \omega_{0}\right)$ defines a symmetric decomposition of $\mathfrak{s p}\left(\mathbb{R}^{2 n}\right)$ by

$$
\begin{aligned}
& \mathfrak{p}(j)=\left\{A \in \mathfrak{s p}\left(\mathbb{R}^{2 n}\right) \mid\{j, A\}=0\right\} \\
& \mathfrak{k}(j)=\left\{A \in \mathfrak{s p}\left(\mathbb{R}^{2 n}\right) \mid[j, A]=0\right\} \cong \mathfrak{u}(p, q) .
\end{aligned}
$$

In particular $\mathfrak{k}\left(j_{0}\right)=\mathfrak{u}(p, q)$. Moreover, one observes $T_{j} \mathcal{J}\left(V, \omega_{0}\right)=\mathfrak{p}(j)$.
Let $\tilde{j} \in \operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$ and $j=\Phi(\tilde{j})$, then $T_{\tilde{j}} \operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$ is canonically identified with $\mathfrak{p}(j)$ and for the differential of the identification one obtains

Proposition 9. Let $\Psi=\Phi^{-1}: \mathcal{J}\left(V, \omega_{0}\right) \rightarrow \operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$. Then it holds at $j \in \mathcal{J}\left(V, \omega_{0}\right)$ that

$$
\begin{equation*}
\mathrm{d} \Psi: T_{j} \mathcal{J}\left(V, \omega_{0}\right) \ni X \mapsto-\frac{1}{2} j^{-1} X \in \mathfrak{p}(j) . \tag{6.6}
\end{equation*}
$$

This can be used to relate the differential of a map

$$
J: M \rightarrow \mathcal{J}\left(V, \omega_{0}\right)
$$

and a map

$$
\tilde{J}=\Psi \circ J: M \rightarrow \operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)
$$

by

$$
\mathrm{d} \tilde{J}=-\frac{1}{2} J^{-1} \mathrm{~d} J .
$$

Recall, that under the above assumptions $\left(T M, D=\nabla-S, S=\frac{1}{2} J(\nabla J), g\right)$ defines a metric $t t^{*}$-bundle. Analogous to the last section we obtain

Theorem 8. Let (M, J, g) be a simply connected almost hermitian manifold with a flat connection ∇, such that (∇, J) is special and the two-form $\omega=g(J \cdot, \cdot)$ is ∇-parallel and let $\left(T M, D=\nabla-S, S=\frac{1}{2} J(\nabla J), g\right)$ be the associated metric $t t^{*}$-bundle. Then the matrix of J in a D^{θ}-flat frame $s^{\theta}=\left(s_{i}^{\theta}\right)$ defines an \mathbb{S}^{1}-pluriharmonic map $\tilde{J}^{\theta}: M \rightarrow \mathcal{J}\left(V, \omega_{0}\right) \rightarrow \operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$.
In particular, given a nice connection D on (M, J) then the map $\tilde{J}^{\theta}:(M, J, D) \rightarrow \operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$ is pluriharmonic.
Proof. Since $D^{0} \omega=\nabla \omega=(D+S) \omega=0$ and $S_{X}^{\theta}:=\cos (\theta) S_{X}+\sin (\theta) S_{J X}$ is skew-symmetric with respect to ω, we obtain $D \omega=0$ and $D^{\theta} \omega=0$. Therefore we can choose for each θ the D^{θ}-parallel frame s^{θ} as a symplectic frame, such that $s^{\theta=0}=s_{0}$. This yields using $D J=0$

$$
X . \omega\left(J s_{i}^{\theta}, s_{j}^{\theta}\right)=\omega\left(D_{X}^{\theta}\left(J s_{i}^{\theta}\right), s_{j}^{\theta}\right)=\omega\left(\left(D_{X}^{\theta} J\right) s_{i}^{\theta}, s_{j}^{\theta}\right)=\omega\left(\left[S_{X}^{\theta}, J\right] s_{i}^{\theta}, s_{j}^{\theta}\right)=-2 \omega\left(J S_{X}^{\theta} s_{i}^{\theta}, s_{j}^{\theta}\right)
$$

Let $S^{s^{\theta}}, J^{s^{\theta}}$ be the representation of S and J in the frame s^{θ}, then

$$
\left(J^{s^{\theta}}\right)^{-1} X\left(J^{s^{\theta}}\right)=-2 S^{s^{\theta}}
$$

or

$$
\mathrm{d} \tilde{J}^{\theta}=\left(s^{\theta}\right)^{-1} \circ S^{\theta} \circ s^{\theta},
$$

where the frame s^{θ} is seen as a map $s^{\theta}: M \times V \rightarrow T M$. This shows for $X \in \Gamma(T M)$

$$
\begin{aligned}
\mathrm{d} \tilde{J}^{\theta}(X) & =\left(s^{\theta}\right)^{-1} \circ S_{X}^{\theta} \circ\left(s^{\theta}\right)=\left(s^{\theta}\right)^{-1} \circ S_{\mathcal{R}_{\theta} X} \circ\left(s^{\theta}\right) \\
& =\left(\left(s^{\theta}\right)^{-1} s^{0}\right) \circ \mathrm{d} \tilde{J}\left(\mathcal{R}_{\theta} X\right) \circ\left(\left(s^{0}\right)^{-1} s^{\theta}\right) \\
& =A d_{\alpha_{\theta}}^{-1} \circ \mathrm{~d} \tilde{J}\left(\mathcal{R}_{\theta} X\right)=\Phi_{\theta}^{-1} \circ \mathrm{~d} \tilde{J}\left(\mathcal{R}_{\theta} X\right),
\end{aligned}
$$

where $\alpha_{\theta}=\left(s^{\theta}\right)^{-1} s^{0}$ is the frame change from s_{0} to s_{θ} and $\Phi_{\theta}=A d_{\alpha_{\theta}}$ which is parallel with respect to the LeviCivita connection on $\operatorname{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$. In other words we have found an associated family. Given a nice connection D on (M, J) Theorem 5 shows that \vec{J}^{θ} is pluriharmonic.

If the above $t t^{*}$-bundle comes from a special Kähler manifold we have the
Theorem 9. Let (M, J, g, ∇) be a special Kähler manifold and $\left(T M, D=\nabla-S, S=\frac{1}{2} J(\nabla J), g\right)$ the associated metric $t t^{*}$-bundle, then the matrix of J in a D^{θ}-flat frame $s^{\theta}=\left(s_{i}^{\theta}\right)$ defines a pluriharmonic map $\tilde{J}^{\theta}:(M, J, D) \rightarrow$ $\mathrm{Sp}\left(\mathbb{R}^{2 n}\right) / U(p, q)$. Moreover, \tilde{J}^{θ} is harmonic.
Proof. By Theorem 8 the map \tilde{J}^{θ} is \mathbb{S}^{1}-pluriharmonic. In the special Kähler case we know that D is the Levi-Civita connection and hence torsion-free. The complex structure J is integrable and so $N_{J}=0$. This means, that D is nice and Theorem 5 shows that \tilde{J}^{θ} is pluriharmonic. Since S is trace-free we get from Proposition 7 that \tilde{J}^{θ} is harmonic.

In [4] we studied this pluriharmonic/harmonic map for a special Kähler manifold in more details.

Acknowledgements

The research of the author was supported by a grant of the 'Studienstiftung des deutschen Volkes'. The author wants to thank his advisor V. Cortés for the interest and the support of his work. Further he thanks M. Krahe [12] for the discussions related to associated families of para-pluriharmonic maps and $t t^{*}$-bundles over para-complex manifolds. Finally he thanks M.-A. Lawn-Paillusseau for interest in this subject and helpful discussions.

References

[1] D.V. Alekseevsky, V. Cortés, C. Devchand, Special complex manifolds, J. Geom. Phys. 42 (2002) 85-105.
[2] N. Abe, S. Kurosu, A decomposition of a holomorphic vector-bundle with connection and its applications to complex affine immersions, Results Math. 44 (2003) 3-24.
[3] V. Cortés, Specical Kähler manifolds: A survey, in: Proc. of the 21 st Winter School 'Geometry and Physics', Srni (2001), Rendi. Circ. Mat. d Palermo. Serie II 69 (2002).
[4] V. Cortés, L. Schäfer, Topological-Antitopological Fusion Equations, Pluriharmonic Maps and Special Kähler Manifolds, in: Progress in Mathematics, vol. 234, Birkhäuser, 2005.
[5] V. Cortés, L. Schäfer, Flat Nearly Kähler Manifolds (in press).
[6] B. Dubrovin, Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993) 539-564.
[7] B. de Wit, A. Van Proeyen, Potentials and symmetries of general guaged $N=2$ supergravity-Yang-Mills models, Nuclear Phys. B 245 (1984) 89-117.
[8] J.-H. Eschenburg, R. Tibuzy, Associated families of pluriharmonic maps and isotropy, Manuscripta Math. 95 (3) (1998) 295-310.
[9] D.S. Freed, Special Kähler manifolds, Comm. Math. Phys. 203 (1) (1999) 31-52.
[10] Th. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2) (2002) 303-335.
[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry Volume I/II, Interscience Publishers, 1963-1969.
[12] M. Krahe, Ph.D. Thesis (in preparation).
[13] M.-A. Lawn, L. Schäfer, Decompositions of para-complex vector-bundles and affine para-complex immersions, Res. in Math. 48 (3-4) (in press).
[14] D. Mc Duff, D. Salamon, Introduction to Symplectic Topology, Oxford University Press, 1995.
[15] P.-A. Nagy, On nearly-Kähler geometry, Ann. Global Anal. Geom. 22 (2) (2002) 167-178.
[16] P.-A. Nagy, Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (3) (2002) 481-504.
[17] L. Schäfer, $t t^{*}$-bundles and pluriharmonic maps, Ann. Global Anal. Geom. 28 (3) (2005).
[18] L. Schäfer, Harmonic bundles, topological-antitopological fusion and the related pluriharmonic maps, J. Geom. Phys. 56 (5) (2006) 830-842.

[^0]: * Corresponding address: Department Mathematik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.

 E-mail addresses: schaefer@math.uni-bonn.de, schafer@iecn.u-nancy.fr.

[^1]: ${ }^{1}$ see Mc Duff and Salamon [14].

[^2]: ${ }^{2}$ In [11] the Nijenhuis tensor is defined with a factor 2.

